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▼ Interest in the development of implantable
polymeric drug delivery systems capable of
modulating drug release as a function of specific
time-varying therapeutic requirements dates
back to the 1980s.There is currently a new gen-
eration of potent drugs emerging as a result of
recent advances in biotechnology. These thera-
peutic drugs and hormones must be adminis-
tered to the body in a precisely controlled man-
ner1–4 in order to optimize medical benefits,
often by mirroring the physiological release pro-
files of their endogenous counterparts, which
may be discontinuous in nature. Furthermore,
many such drugs have a short biological half-life
or may be degraded by passage through the 
gastrointestinal tract, thus precluding oral 
administration.

Parental drug administration5 employing
chronopharmacological approaches (chronother-
apy) has underlined the importance of designing

appropriate release kinetics into the implantable
device from the outset. Examples of candidates
for such intermittent drug delivery include:

• insulin as a means of normalizing glucose 
levels over a relatively narrow range6,7;

• parathyroid hormone to accelerate bone heal-
ing and remodeling8,9.

It is important to distinguish between depot
formulations, leading to sustained release, and
true controlled-release drug delivery, which is
the focus of this review. For depot formulations,
drug delivery may, for example, be solubility-
controlled by insoluble salts, oil emulsions or
other approaches10. Alternatively, one may con-
sider dissolution-controlled drug delivery in
which a phase erosion of the polymer carrier 
is associated with fast or slow dissolution of 
the macromolecular chains11. Diverse strategies
in controlled drug delivery were reviewed 
recently12.

Controlled-release drug delivery systems
True controlled-release drug delivery systems
may be divided into two principal categories:

• delivery systems capable of feedback control
[for examples and reviews, see Refs 4, 13–15
and Steward (1995) Permeability of Polymer Latex
Films, Nottingham Trent University PhD Thesis,
Nottingham, UK];

• delivery systems for which the release rate
over time is pre-programmed into the device.

This review focuses on the latter category and
includes discussion of some relevant mathemati-
cal models describing Fickian and non-Fickian
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diffusion as related to drug delivery systems. Only monolithic
(matrix) devices are considered here, because these are possibly
the most common of the devices for controlling the release of
drugs.

Monolithic devices are relatively easy to fabricate, when
compared to reservoir devices, and there is less risk of an acci-

dental high dosage, which could result from the rupture of the
membrane of a reservoir device.The drug-impregnated matrix
is typically formed by compression of a polymer and drug mix-
ture or by dissolution or melting of the mixture followed by
solidification.The drug dispersed within the implanted mono-
lithic matrix dissolves and is leached out into the surrounding
body tissues.The rates of release, in accordance with Fick’s laws
of diffusion16, will depend upon a complex set of physico-
chemical parameters (Box 1), and certain parameters will 
dominate depending upon conditions and/or applications (for
examples, see Refs 17 and 18).

Mathematical modelling of drug release
The problem can be considered using the simplest possible
representation19 of the moving boundary problem for the dif-
fusion of active component from a one-dimensional slab ma-
trix (Fig. 1). The outer surface of the matrix is considered to
erode and to move inward at the same time as a diffusion
front, which starts at the exposed surface of the matrix, also
moves inward towards the interior of the slab of initial thick-
ness s0.The scheme can be explained as follows:

• the model adopts the general premise that the drug concen-
tration immediately behind the inward-moving diffusion
front is fixed at the solubility limit cs;

• drug concentration is denoted c(x,t) within the matrix;

• the thickness of the eroding slab at time t is denoted 
x 5 s(t);

• the position of the diffusion front is denoted x 5 u(t);

• the initial uniform drug loading concentration within the
matrix is denoted c 5 c0.

Both linearized20 and exact concentration distributions are
shown in Fig. 1 for illustrative purposes only.

Governing equations
The distribution of drug concentration c(x,t) within the ma-
trix at any time t and position x is governed by Fick’s second
law21:

where the flux is Dgrad c from Fick’s first law and D is the dif-
fusion coefficient for the drug contained within the pores of
the matrix. In general, the matrix may be anisotropic and D
will depend upon position within the matrix and on time, due
to possible spatial and temporal variations, respectively, in

¶c
¶t

= div(Dgrad c) =
¶

¶x
Dx

¶c
¶x

æ
è

ö
ø

+
¶

¶y
Dy

¶c
¶y

æ

è
ç

ö

ø
÷ +

¶
¶z

Dz
¶c
¶z

æ
è

ö
ø

Figure 1. Simple slab matrix.
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Box 1. Some factors affecting rates of release
from a monolithic matrix
Drug and matrix diffusion coefficients
Drug molecular weight and size
Matrix pore size
Tortuosity of interconnecting channels within matrix
Matrix swelling
Osmotic pressure gradients
Ionic exchanges
Local electromagnetic force fields
Matrix erosion and drug solubility

(1)
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porosity, solubility, etc. In some instances, the diffusion coeffi-
cient D may also be concentration-dependent.

Fickian diffusion
Diffusional release of the drug is normally governed by Fick’s
first and second laws. Higuchi20 first investigated the release of
drug from a planar surface and from a spherical pellet, assum-
ing a perfect sink condition (c 5 0) at the exposed surface of
the monolith.

The embedded drug is dissolved and is leached out by the
penetrating solvent, diffusing outward through the network of
capillary channels filled with the extracting solvent (Fig. 1).
A pseudo-stationary state was assumed, implying that the in-
ward progressing diffusion front separating the unextracted re-
gion ahead of it from the partially extracted region behind it,
moves slowly enough that a linear concentration distribution is
obtained between the diffusion front and the exposed surface
of the device. Fick’s first law is applied across this diffusion
front, and this serves to determine the velocity and subse-
quently the position of the front as a function of time. How-
ever, this pseudo-stationary approximation is only appropriate
when the concentration co of drug initially impregnated in the
matrix is much greater than its solubility limit cs in the matrix
(high drug loading).The drug concentration is assumed to fall
to its solubility limit immediately behind the inward progress-
ing diffusion front, and a perfect sink condition is maintained
at the surface of the matrix. No surface or volume erosion of
the matrix was considered by Higuchi20.

Analytical solutions are possible for some simple one-
dimensional or quasi one-dimensional geometries with spatially
uniform diffusion coefficients.The linearized concentration dis-
tributions are only approximations of the true error function-
type distributions resulting from exact solutions of Fick’s second
law, which governs the passive diffusion process. The pseudo-
stationary restriction was subsequently removed by Paul and 
McSpadden21 by use of the exact solution for a semi-infinite slab.

The full problem of the Stefan moving-boundary type was
considered by Crank22 and has been discussed in considerable
detail by Rubenstein23. Lee24 has approximated the solution of
Paul and McSpadden21, in which transcendental expressions ap-
pear, and has generalized it to include erodible matrices by em-
ploying the refined version of the heat balance integral method
due to Volkov and Li-Orlov25. The unsteady Fick’s second law
(Equation 1) is integrated twice with respect to the spatial co-
ordinate and the concentration distribution in the partially ex-
tracted region is approximated by a polynomial in the spatial
coordinate. Lee24 uses a simple quadratic concentration profile
that satisfies the boundary conditions to approximate the 
transcendental expressions of the exact solution on an integral
average basis. He finds the integral solutions to be much more

accurate than the pseudo-stationary results and much easier 
to use than the exact solutions. The results are found to 
be particularly useful for the release of dispersed solute when
the solute (drug) loading is not much in excess of the drug 
solubility in the matrix.

Similarity solution
Marshall and Windle26 developed a similarity solution for the
case of constant c0 and cs with a perfect sink condition at the
exposed surface. They then perturbed that solution to account
for the presence of a thin diffusion boundary layer just outside
the exposed surface.The authors also investigated the theoreti-
cal possibility of constructing a drug delivery device with 
a drug release rate that is a pre-specified function of time 
c(t); this would be achieved by introducing into the matrix
particular controlled spatial variations of solubility cs(x) and
impregnation concentration co(x). By accepting certain 
simplifications, such as abandonment of the unsteady diffu-
sion equation and a linear (pseudo-stationary) approximation
of the drug concentration in the partially extracted layer, they
were able to propose the outline of a (numerical) solution that
would respect the physical requirements that the thickness 
of the partially extracted layer must not decrease with time 
and that the concentration there should remain positive.

More recently, some simpler but possibly more practical ana-
lytical and computational solutions have been published for the
diffusional release of bioactive agents from impregnated mono-
liths of various geometries. Abdekhodaie and Cheng27 obtained
exact solutions for solute release from planar and spherical ma-
trices into a finite external volume when the initial solute load-
ing exceeds the solubility limit in the matrix. They considered
the process to be diffusion-controlled rather than swelling- or
dissolution-controlled.Their solutions, which are based upon a
combination of variables method exploiting previously estab-
lished exact solutions for early time positions of the diffusion
front, indicate an increase in fractional release with increasing
external fluid volume. Furthermore, for a given external vol-
ume, fractional release decreases with an increase in initial drug
loading. Similar (computational) results were reported by
Collins et al.19 for diffusional release from an eroding slab.

The manufacture of such bioerodible implants, as a means of
tailoring the drug output at pre-programmable release rates
using several layers of surface eroding polymers combined with
bulk eroding polymers, has been reported recently28. Göpferich
and Langer29,30 earlier developed theoretical models to predict
the erosion rates of two- and three-dimensional surface erod-
ing polymers [such as p(CPP-SA) 20:80, polyanhydrides and
poly(D,L-lactic acid)] destined for the local treatment of infec-
tions, cancer or vaccine administration. An experimental study
of the enhanced diffusional release of drug resulting from 
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matrix degradation was reported in 1995, supported by a
quasi-empirical mathematical model31. This model is based 
on the fact that when the matrix degrades significantly, many
channels and crevices are opened throughout the matrix,
accelerating drug release. This causes the effective diffusion 
coefficient to vary over time. Approximate expressions for 
cumulative mass release were used for the early and late stages 
of release, respectively: Mt/M~ ,0.4 and Mt/M~ .0.6.

Comprehensive computational model
A far more comprehensive computational model appears to
have been formulated in a two-part series recently published
by Wu and Zhou32,33.They used a finite-difference analysis and
took into account complex geometries and composite matrix
structures as a means of assessing the factors influencing re-
lease kinetics.The model was used to analyse drug release into
a finite volume from matrix devices of complex geometries,
including a convex tablet, a hollow cylinder, a doughnut-
shaped ring and an inward-release hemisphere. Effects of com-
posite structures on release kinetics were investigated for com-
posite pessaries, coated elastomer rings and multi-layered
tablets in the first part. In the second of the two-part series, the
influences of initial drug concentration distribution, matrix
anisotropy and time- and concentration-dependent diffusion
coefficients were assessed, as well as the importance of edge-
and end-effects in comparison with simpler one- and two-
dimensional models, for various coating materials of different
permeabilities, as a potential aid in the design of complex
drug-impregnated matrix systems. However, the authors rec-
ognize that these models neglect the important physical and
biological effects of drug absorption from biological mem-
branes, time-varying drug solubility and drug release accom-
panied by considerable matrix swelling and/or erosion.

The Fickian (also termed Case I) solution is very much com-
plicated by the fact that the position of the moving (diffusion)
boundary is not known, except in the course of solving the
original problem.

Non-Fickian diffusion
A second type of limiting behaviour – Case II diffusion – was
recognized in 196634. It is observed in polymer penetrant sys-
tems in which substantial swelling occurs, accompanied by the
formation of a sharp diffusion front. Such systems are also
used in controlled-release drug delivery devices. Andersson
and colleagues have recently pointed out the importance in
many gel applications of swelling and shrinking of the poly-
mer matrix, citing examples in controlled and slow release ki-
netics, which determine the rate of diffusion of active compo-
nent out of the matrix35. Further applications include gel
extraction, in which the gel may be swollen and shrunk several

times. For typical gels such as poly(N-isopropylacrylamide),
the pressure vs equilibrium volume curve is bell-shaped, simi-
lar to that known for a classic van der Waals gas.The isobars for
a gel near a critical point are very reminiscent of the isotherms
for a van der Waals gas near its critical point.

Collective diffusion equation
The motion of the polymer network of a gel during the course
of swelling and shrinking is governed by a diffusion equation,
called the collective diffusion equation. The diffusion coeffi-
cient is defined as the ratio of the osmotic bulk modulus, K, of
the polymeric network to the frictional coefficient, f, between
the polymer network and the liquid, such that D 5 K/f. The
displacement vector u (r,t), representing the displacement of a
physical point or position within the polymeric network from
its final equilibrium position after the gel is fully swollen, is
seen to obey the diffusion equation.

The swelling force causing this motion was recently meas-
ured as a function of time for the interpolymer complexes
formed by graft polymerization of poly(ethylene glycol) (PEG)
monomethacylate on poly(methacrylic acid) in various pH-
buffered solutions36. It was reported that the forces exerted de-
creased with increasing molecular weight of the PEG graft.The
authors found that the swelling force was generally controlled
by the relaxation process of the macromolecular chains, caus-
ing a significant deviation from pure (Case I) Fickian swelling
behaviour.

Characterization of Case II diffusion
Case II (or anomalous) diffusion has been characterized by Fu
and Durning37 as developing:

• a step-like jump in concentration at the sharp boundary,
separating a highly swollen (rubbery state) region from a
dry, typically glassy region;

• propagation of this sharp front into the polymer at constant
velocity, leading to a linear increase in absorbed fluid with
time;

• a small Fickian (Case I) diffusion of fluid into the glassy 
region ahead of the advancing boundary;

• an initial induction time for the establishment of the sharp
front.

One-dimensional model for coupled swelling diffusion
Astarita and Joshi formulated an interesting and relatively
straightforward one-dimensional mathematical model for the
coupled swelling diffusion process of a polymer sample38.
Solvent at the exposed surface of the polymer is maintained at
a constant concentration and infuses into the matrix, causing it
to swell. A front, separating the swollen from the glassy region
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of the polymer, progresses into the depth of the matrix. Both
finite and semi-infinite slabs are considered through variants
of the distal boundary condition.The authors were particularly
interested in analytical asymptotic solutions in the region of
time equals zero.They noted that the sorption of solvents into
polymers depends upon the thickness of the polymer in the
direction of diffusion.

In most work on swelling in polymers, a nonlinear diffusion
coefficient is fitted to the observed behaviour by forcing an
awkward dependence of diffusion coefficient on concentration
and/or other parameters.They pointed out a fallacy in this ap-
proach – that is, as for any functional dependence of diffusion
coefficient on other variables, the Boltzmann theorem shows
that there always exists a region in the neighbourhood of time
t > 0, in which cumulative mass transfer into the polymer and
the distance travelled by any concentration front vary as t1/2.
They contend that models with variable diffusion coefficient
will always predict that the weight sorbed and the distance trav-
elled by the swollen-glassy interface increase linearly with time,
while they are observed experimentally, at least at short times,
to increase as t1/2. The authors are able to obtain the t1/2 de-
pendence at short times, evolving into a linear dependence on
time at larger times, by accounting for the diffusion of solvent
into the glassy region ahead of the advancing front. In so
doing, they are obliged to formulate a relation for the swelling
kinetics in which they make the following considerations:

• the velocity of the swollen-glassy interface is proportional to
the difference to the nth power of the solvent concentration,
c, and the solubility limit, c*, in the swollen region, that is
K(c 2 c*)n;

• there is a constant value of diffusion coefficient, D, in the
swollen region; that is, K(c 2 c*)n, and a different constant
value D', in the glassy region;

• different degrees of swelling are not accounted for.

An additional mass flux term is added to Fick’s first law on
the swollen region side of the swollen-glassy interface.All such
swelling is assumed to take place on the swollen side of the
front, with no swelling in the glassy region, even though some
solvent may diffuse into the glassy region ahead of the swollen-
glassy interface. This additional mass flux is taken as propor-
tional to (c 2 c*) and is assumed to be the driving force that
regulates the rate of swelling.

The authors obtained an expression for the total mass of 
solvent sorbed (into both regions) as the sum of two terms
proportional respectively to t1/2 and to t.The former dominates
for time small and the latter for larger times t. They obtained 
asymptotic solutions for small and very small sample 
thicknesses, the latter being relevant to membranes. Model 

predictions appear to agree well with published results in the
literature, except possibly for those few cases in which regional
variations in the degree of swelling may have been important.

Estimation of exponent ‘n’
Without apparent reference to the rigorously developed work of
Astarita and Joshi38, which had been published some nine years
earlier, Ritger and Peppas39,40 put forth some simplified semi-
empirical estimates of the exponent n which appears in their
proposed simplified expression for cumulative mass release:

Their approximations, based on a partial fit to the classical
analytical solutions from Crank22, may only be useful for pre-
liminary design purposes, as they only predict up to the first
60% of the time release.These approximations indicate qualita-
tive differences in diffusion times are to be expected for differ-
ent geometries of symmetry and for particle size distributions
from monodisperse samples.Their work appears to follow, at a
far less detailed level, from the earlier results of Astarita and
Joshi38, confirming that Fickian release initially varies as n 5
1/2 for all geometries and particle sizes.

For Fickian diffusion, the authors fitted the first 60% of the
release curve with values of n 5 0.50 for thin films; n 5 0.45
for cylindrical samples and n 5 0.43 for spherical samples. For
swellable controlled-release systems with equilibrium swelling
ratios not greater than 25% water content by volume, they sug-
gested values of n 5 1.0 for thin films, n 5 0.89 for cylindri-
cal samples and n 5 0.85 for spherical ones. Implicit in these
values are the assumptions that the drug concentration varies
linearly with depth in the swollen region and that there is no
drug diffusion in the glassy region. A simple first-order kinetic
relation was assumed for the cumulative mass release from a
thin polymer film.

Fu and Durning37 suggested that this non-Fickian viscoelas-
tic diffusion may result from a coupling between molecular
diffusion and the intrinsic time-dependent response of the
polymer to the deformation induced by this diffusion of fluid
into it. Indeed, Vrentas et al.41 observed that mass transport is
Fickian if the ratio of mechanical relaxation time to character-
istic inter-diffusion time is either very large or very small. Only
when the two are approximately balanced do viscoelastic effects
appear.

The problem has been analysed in considerable mathemati-
cal detail by Thomas and Windle42 in 1982 and subsequently by
Durning43 in 1985, Durning and Tabor44 in 1986 and Fu and
Durning37 in 1993 for the cases of linear (infinitesimal defor-
mations) and nonlinear viscoelastic diffusion. These develop-
ments are briefly discussed below.

Mt / Mµ = ktn (2)
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If one-dimensional mass transport M(t) per unit area within
a polymer slab is characterized (Eq. 2 for small time t) by M 5
ktn, where k and n are constants, then Fickian (Case I) behav-
iour corresponds to n 5 1/2, while for non-Fickian (Case II)
transport n 5 1. The values of the exponent ‘n’ may vary
slightly for cylindrical or spherical geometries. Practically all
nonlinear sorption experiments (Fu and Durning37) fall into
the intermediate range 1/2 ,n ,1, so that Case II diffusion
may be viewed as a natural limiting case of nonlinear viscoelas-
tic diffusion.

Transport behaviour of organic penetrants
A comprehensive mathematical theory was developed by
Thomas and Windle42 in 1982 to explain the transport behav-
iour of organic penetrants in glassy polymers in terms of two
basic parameters: the thermodynamic diffusion coefficient D
and the viscous flow rate of the glassy polymer 1/ho, where ho

is the viscosity of the unswollen polymer.The analysis has been
developed in three stages:

• determination of the thermodynamic relationship between
pressure, concentration and activity of the swelling polymer;

• calculation of the swelling kinetics of a sufficiently thin el-
ement of matrix, in which Fickian diffusional resistance
may be safely neglected, through an estimation of the me-
chanical viscous resistance of the polymer (gained through
creep data) to changes in volume and shape, taking into ac-
count that this response may change as the polymer is plas-
ticized by the penetrant solvent;

• characterization of the complete diffusion process resulting
from changes in the concentration profile due to creep 
at constant activity and the change in the activity profile at
constant activity-to-concentration ratio in alternate time 
increments.

Thomas and Windle42 present their results in the form of
total sorption vs time curves and as families of concentration
profiles at various times. In this form, they are suitable for 
direct comparison with experimental measurements. Their
one-dimensional formulation for total sorption requires the
numerical solution of the coupled field equations governing
the fluid concentration, c, and the fluid activity, a, where:

and mo
1 is the pure liquid potential.The numerical solution, per-

formed using an explicit finite-difference scheme, shows that the
viscosity must decrease strongly with concentration for the model
to predict Case II behaviour and suggests that the diffusion coeffi-
cient D(c) must increase strongly with concentration c.

Analytical asymptotic solutions for diffusion front velocity and
induction time
Hui and colleagues45,46 obtained analytical asymptotic solu-
tions for the diffusion front velocity and the induction time
based on the Thomas–Windle42 model.They took the viscosity
h(c) to decrease exponentially with concentration c and set
the diffusion coefficient D(c) equal to a constant for concen-
trations c , ccrit and equal to infinity for c . ccrit. Fu and
Durning37 questioned the realism of this prescription of D,
while recognizing that it does lead to neat asymptotic steady-
state predictions. The latter admitted that the Thomas–Windle
model42 did, nonetheless, capture the essential phenomeno-
logical features of Case II diffusion, and they set about improv-
ing the accuracy of the numerical methods to evaluate it. They
used the method of lines to reduce the governing partial dif-
ferential equations to a coupled system of ordinary differential
equations in time by first partitioning the spatial domain into
subintervals, then using finite-difference or finite-element
methods to discretize the spatial derivatives. Care must be
taken in computing the steep concentration gradients that de-
velop at the travelling wave front. Numerical results from this
work confirm the essential features of the foregoing works and
indicate that, for thin films, sorption is surface swelling-
controlled, whereas for thick films it becomes diffusion-
controlled. Their calculations also show that strong non-
linearities in both diffusivity and viscosity are essential for the
correct description of Case II transport.

Follow-up on Thomas–Windle-inspired models
Cox and Cohen47 in 1989 and Edwards and Cohen48 in 1995
followed up on the Thomas–Windle41-inspired models for
stress-driven diffusion in polymers and the effects of a chang-
ing diffusion coefficient in super-Case II polymer-penetrant
systems. As the polymer absorbs fluid in its rubbery state,
pressures build up on the solvent within it, and this increases
its chemical potential. Cox and Cohen47 modelled this stress
build-up as an amalgamation of the classical Maxwell visco-
elastic model and the Kelvin–Voigt elastic model. In their
choice of the dependence of the stresses on the solvent con-
centration itself, and not on the time derivative of that concen-
tration (as attempted previously in 1985 by Durning43 and
which did not result in true Case II behaviour), Cox and
Cohen47 assumed that the medium must be able to support
stresses at equilibrium. However, they did not compute the
pressure gradients or associated strain or strain-energy fields,
but rather left their formulation in terms of internal energy.

The principal purpose here appears to be to contrive a math-
ematical artifact to supplement the concentration gradient in
Fick’s second law in order to improve the model description Case
II diffusion by, in effect, introducing the ‘memory’ associated

  a = exp(m1 – m°1 ) / RT (3)
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with nonlinear viscoelastic deformation. Their observations
that, in some such systems, the diffusion coefficient signifi-
cantly increases as the polymer changes from a glassy to a rub-
bery state would appear to be consistent with the conclusions
in 1990 of Siegel and Langer18. However, the latter have shown
that the very slow (retarded) release of protein drugs from
polymers is due more to the mechanism of pore constrictions
(narrowed throats between interconnecting pores) than from
concentration-dependent diffusion or random pore topology.
The junction of capillaries of very different cross-sectional
areas, which connect the matrix pores, is predicted by the
Siegel-Langer model18 to lead to arbitrarily high retardations.

It remains to be seen whether further mathematical model-
ling, coupled with experimental measurements conducted at
the matrix pore level, will be successful in quantifying this per-
ceived relationship between the increased solvent pressure in-
duced during polymer swelling and the associated effects on
the pore dimensions, and consequently the diffusion coeffi-
cients, which are critical in regulating the rate of drug release.

Mechanics-based approach
A very fundamental mechanics-based treatise on the constitu-
tive equations governing the stress-assisted diffusion of solutes
in solids was presented by Aifantis49 in 1980. His treatment of
the equations is very rigorous, and includes a number of phe-
nomena of relevance to Case II transport, such as time-depend-
ent plasticity, in which stress and strain are not related one-to-
one, and accounts for memory effects by viewing the stress
tensor T and diffusive force p, not as functions but as function-
als of the corresponding variables.This approach opens the way
for formal expressions of the effects of a deformation or tem-
perature history on the diffusion process. However, this inter-
esting possibility is pursued by Aifantis49 only for an example
case in which the diffusion process depends on the history of
the basic diffusion variables.

Numerical methods
In general, effective numerical techniques must be devised for
computational solutions of these models, although some as-
ymptotic solutions have been obtained in analytical form. Such
numerical solutions become all the more necessary as ad-
ditional complexities associated with other transport mecha-
nisms, such as stress-driven diffusion related to polymer
swelling and de-swelling, two- and three-dimensional geom-
etries, erosion and non-isotropic matrix materials etc., are in-
corporated into the drug delivery models.

Second-order finite-difference algorithms
Hyman et al.50 recently developed second-order finite-differ-
ence algorithms for the computational solution of such diffusion

problems in strongly heterogeneous and non-isotropic media,
and these would appear to be applicable to the case of im-
plantable drug delivery systems.Their approach is based on the
support-operators method in which one replaces the classical
inner product of vector functions by an inner product
weighted by the inverse of the material properties tensor D.
The flux operator is defined as (D grad) – the material proper-
ties tensor D times the gradient, rather than the gradient itself
– as one of the basic first-order operators.This results in a con-
servative finite-difference scheme on logically rectangular
grids. The discrete analog of the variable coefficient Laplacian
is symmetric and negative definite on nonuniform grids.When
the material properties, such as diffusion coefficient D and par-
tition coefficient K, are constant, the discrete flux operator is
exact for linear functions. A key to improving the accuracy for
non-smooth D is to use the flux operator D grad, rather than
the gradient operator grad, as one of the basic first-order oper-
ators in Fick’s second law.

In these methods, the drug concentrations and the elements
of the diffusion coefficient matrix D are defined at the cell cen-
ters. Hyman and colleagues50 point out that when D is discon-
tinuous, the nodal discretization of vector quantities, such as
the mass flux (defined by their Cartesian components evaluated
at the nodes of the grid), is not as accurate as the surface dis-
cretization wherein vector quantities are described by their or-
thogonal projections into the directions perpendicular to the
face of the cells.This is so because the mass flux perpendicular
to the cell faces is always continuous, even when D is not.

In this approach, which would appear to be particularly in-
teresting for the higher dimensional geometries of the drug de-
livery device, the discrete analog of the variable-coefficient
Laplacian div D grad can be reduced to two discrete operators:
a divergence div, and a flux operator GRAD ~2D grad, which
are the adjoints of each other.This assures a self-adjointed and
negative definiteness of the discrete variable-coefficient Lapla-
cian for general computational grids. On rectangular grids in
particular, all of the discrete operators reduce to standard finite-
difference approximations. The algorithm appears to produce
the appropriate harmonic average diffusion coefficient for the
mass fluxes when the discontinuous diffusion coefficient 
is a scalar.

Conclusions
This brief, and consequently incomplete, literature review of
mathematical modelling of the release of dispersed solutes from
polymeric monolithic matrices spans a 35-year period. It may
serve at the same time to draw attention to the mathematical
and physical complexities of the subject, particularly for the
Case II diffusion processes that occur in swellable polymers, and
to point the way towards the organization of measurements on
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the pore level for the improvement of the present understand-
ing of the constitutive relations and swelling kinetics, which are
critical to a quantitative description of the process. In so doing,
many fields of application, aside from the current focus on con-
trolled-release drug delivery, may benefit. Such possible indus-
trial and environmental applications include:

• removal of solvent from polymer solutions during dry 
spinning41;

• photoresist technology and microlithography51;

• diffusional release of pollutants and additives from polymers
into the environment52;

• controlled release of agricultural chemicals53.

As for the pharmaceutical field of application, it is clear that
the development of reliable computational design tools will 
result in the need for fewer release experiments to bring a 
particular drug formulation to the market.
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